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A n-dimensional topological manifold M is a second countable, Hausdorff toplogical space such that for
every x € M there is a neighborhood U of x such that U is homeomorphic to R™. A k-smooth atlas on M is
a collection {(Uy, da)} such that (a) {U,} covers M and for each «, 3, the function pg o p ! restricted to
(U NUg) = R™ is C*. An n-dimensional C* manifold is an n-dimensional topological manifold equipped
with a C*-smooth atlas. We say M is a smooth manfiold if k = cc.

Let M and N be smooth manifolds of dimensions m and n, respectively, and let f : M — N be a
function. Let zop € M. Let (U, ) be a chart containing o and let (V, 1) be a chart containing f(x¢). Then
the function 1 o f o o~ ! is a function from ¢(U) € R™ to (V) C R", and we say f is C*-smooth at x if
the map v o f o p~! is smooth at ¢(zg). It is worth noting that this definition is independent of the charts
chosen. Indeed, if (U’,«) and (V',8) are two other charts of x¢ and f(xq), respectively, then by the fact
that all charts are diffeomorphism, we get that 5o f oa™! is also smooth.

We begin by discussing paths on a manifold. Let 2o € M, and let v : (—1,1) — M be a smooth function
such that v(0) = xo. Given such a gamma, we define v, : C*°(M) — R by

02 () = (2 £ 07)(0).

Note that v, is linear, and if f,g € C°°(M) then

vy (fg) = f(p)vy(g) + vy (f)a(p)

i.e. v, satisfies the Liebniz rule. We recall that a derivation is a linear map satisfying the Liebniz rule.
So each v, is a derivation. We say two curves 7; and 72 which pass throgh p are equivalent if for every
f € C(M) we have

Uy (f) = Uy, (f)

and we define the tangent space at p T, M to be the equivalence classes of these curves. Elements of 1), M
will be denoted by v, where v is a curve through p.
Now fix a chart (U, z) of p where z = (z!,...,2") : U — R". Then a smooth function f : M — N can

be written as f(z!,...,2"). Thus we can define the derivations ai(p) : C®(M) — R as follows:
xl
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= a(f(ml,...,xith,...,x").

Thus, if 7 is a curve going through p and we define the coordinates z*(t) = x%(v(¢)) then
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We note also that the derivations 9*(p) = %(p) are linearly independent. Indeed, if > a;0" = 0 then

applying this to 27 yields a; = 0. Thus, we can identify 7, M with the real span of {9'(p),...,d"(p)}, which
has dimension n. Similar to the tangent space, we define the co-tangent space to be the dual of T),M, i.e.
Ty M. Given an n-dimensional smooth manifold M, we define its tangent bundle T'M as

™ = | | T,M
peEM

together with a projection map 7 : TM — M given by m(v,) = p. We now define a manifold structure on
.0
TM. Let (U, ¢) be a chart in M. Then for every p € U, we can write v, = > v’ e
xl

a chart (7=1(M), ) by

(p). Then we can define

#(vp) = (2(p), (v, .0")).

This makes T'M into a 2n-dimensional manifold.

We are now ready to define the differential of a function, which is the analog of the Jacobian for manifolds.
Let f : M — N be a smooth map of manifolds, and fix a p € M. Let v, be a member of T, M. Then if
g € C*(N) then we can define the pushforward or differential f. ,: T,M — Ty, N by

df = f*,p(”a)(g) ==wa(go f).



As we have this for each p, we get a map between tangent bundles
fo :TM — TN

which restricts to f. , on each T,M. As it turns out, f is smooth if and only if f, is smooth. We also denote
f« by df. We will define the d operator shortly. Similar to the tangent bundle, we define the co-tangent
bundle which is defined as
T°M = | | T;M
peEM
which carries the “same” manifold structure as TM.

With the differential of a function defined, we turn our attention to k-forms, which are the appropriate
domain of integration. Recall that for a vector space V', we can form its tensor and exterior algebras TV
and AV, which have graded components TV and A*V, respectively. Let 7 be the projection map from
A*T*M onto M, induces from the projection TM — M. For k > 0, a differential k-form w is a smooth map
w: M — A*TM such that mow = idy;. First, note that it is clear that for each p € M we get an alternating
form

wp : (T,M)F = R.
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Let (U, ) be a local chart, let {@} be the basis of T, M and let {dz'} be the basis of (T, M)*. Then we
can write

w = Zwil,wikdxil Ao A dat

where the sum ranges over all subsets of cardinality k of {z!,... 2"}. We then let Q¥(M) denote the k-forms
on M, where we define Q°(M) = C>(M). It is clear that Q"(M) = 0 when r > n. If M is n-dimensional,
then a nowhere vanishing n-form is called a volume form. Such a form w has the form w = fdz' A ---da”,
where f € C*°(M) is such that f(z) # 0 for all z € M. The intermediate value theorem implies that f has
the same sign on all of M. We call this the orientation of the manifold.

Now let M be an n-dimensional manifold, and let w € Q" 1(M). We want to find a formula for
integrating w as in Stoke’s thereom from multivariable calculus. Let (U, ¢) be a chart. Then we obtain a
map w* = wo ¢!, which is a n — 1 form on ¢(U). Thus,

/ wocpflz/ d(wo ™).
»(U) 9p(U)

Let (Uq, ¢a) be a countable atlas of M and let {p,} be a partition of unity subordinate to {U,}. One can

then write w = Y pqw. Then
w= Paw = / Paw.
/M /M Z Z M

By Stoke’s thereom in multivariable calculus, we obtain

/ paw:=/ ww‘1=/ d(wop™)
M (U) (V)

/Mw N Z/W(U) dwoy™) = Z/{)Ua = /E)M s

Theorem 1. (Stoke’s Theorem) Let M be a real orientable smooth manifold of dimension n with boundary,
and let w € Q"~Y(M) be a differential form with compact support. Then

/ dw:/ w.
M oM

Let us end this section by defining the d operator that we defined on smooth functions. So far, we have
one function d : C*°(M) — Q'(M). We aim to define d as a map from QF(M) to Q¥*+1(M). Let us assume
that d satisfies the following:

SO

1. d is linear
2. d>=dod=0
3. Ifw e QF(M) and n € QY(M) then d(w An) = dw An+ (=1)*w Adn

Given our first d on smooth maps, it is clear that we can extend to a map from Q*(M) to QF+1(M).
This defines the de Rham complex, which is the cochain complex

QR (M) By Rty 2
from which we obtain the de Rham cohomology groups

HEY (M) = ker(d,)/im(d,,_1).



