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A n-dimensional topological manifold M is a second countable, Hausdorff toplogical space such that for
every x ∈M there is a neighborhood U of x such that U is homeomorphic to Rn. A k-smooth atlas on M is
a collection {(Uα, ϕα)} such that (a) {Uα} covers M and for each α, β, the function φβ ◦ φ−1

α restricted to
φ(Uα ∩Uβ) → Rn is Ck. An n-dimensional Ck manifold is an n-dimensional topological manifold equipped
with a Ck-smooth atlas. We say M is a smooth manfiold if k = ∞.

Let M and N be smooth manifolds of dimensions m and n, respectively, and let f : M → N be a
function. Let x0 ∈M . Let (U,φ) be a chart containing x0 and let (V, ψ) be a chart containing f(x0). Then
the function ψ ◦ f ◦ φ−1 is a function from φ(U) ⊂ Rm to ψ(V ) ⊂ Rn, and we say f is Ck-smooth at x0 if
the map ψ ◦ f ◦ φ−1 is smooth at φ(x0). It is worth noting that this definition is independent of the charts
chosen. Indeed, if (U ′, α) and (V ′, β) are two other charts of x0 and f(x0), respectively, then by the fact
that all charts are diffeomorphism, we get that β ◦ f ◦ α−1 is also smooth.

We begin by discussing paths on a manifold. Let x0 ∈M , and let γ : (−1, 1) →M be a smooth function
such that γ(0) = x0. Given such a gamma, we define vγ : C∞(M) → R by

vγ(f) = (
d

dt
f ◦ γ)(0).

Note that vγ is linear, and if f, g ∈ C∞(M) then

vγ(fg) = f(p)vγ(g) + vγ(f)g(p)

i.e. vγ satisfies the Liebniz rule. We recall that a derivation is a linear map satisfying the Liebniz rule.
So each vγ is a derivation. We say two curves γ1 and γ2 which pass throgh p are equivalent if for every
f ∈ C∞(M) we have

vγ1
(f) = vγ2

(f)

and we define the tangent space at p TpM to be the equivalence classes of these curves. Elements of TpM
will be denoted by vγ where γ is a curve through p.

Now fix a chart (U, x) of p where x = (x1, . . . , xn) : U → Rn. Then a smooth function f : M → N can

be written as f(x1, . . . , xn). Thus we can define the derivations
∂

∂xi
(p) : C∞(M) → R as follows:

∂

∂xi
(f)(p) :=

d

dt
(f(x1, . . . , xi + t, . . . , xn).

Thus, if γ is a curve going through p and we define the coordinates xi(t) = xi(γ(t)) then

(
d

dt
f ◦ γ)(0) = d

dt
f(x1(t), . . . , xn(t)) (1)

=
∑ dxi(t)

dt

∂f

∂xi
(p) (2)

We note also that the derivations ∂i(p) =
∂

∂xi
(p) are linearly independent. Indeed, if

∑
ai∂

i = 0 then

applying this to xj yields aj = 0. Thus, we can identify TpM with the real span of {∂1(p), . . . , ∂n(p)}, which
has dimension n. Similar to the tangent space, we define the co-tangent space to be the dual of TpM , i.e.
T ∗
pM . Given an n-dimensional smooth manifold M , we define its tangent bundle TM as

TM =
⊔
p∈M

TpM

together with a projection map π : TM → M given by π(vp) = p. We now define a manifold structure on

TM . Let (U,φ) be a chart in M . Then for every p ∈ U , we can write vp =
∑
vi

∂

∂xi
(p). Then we can define

a chart (π−1(M), φ̃) by
φ̃(vp) = (φ(p), (v1, . . . , vn)).

This makes TM into a 2n-dimensional manifold.

We are now ready to define the differential of a function, which is the analog of the Jacobian for manifolds.
Let f : M → N be a smooth map of manifolds, and fix a p ∈ M . Let va be a member of TpM . Then if
g ∈ C∞(N) then we can define the pushforward or differential f∗,p : TpM → Tf(p)N by

df := f∗,p(va)(g) := va(g ◦ f).
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As we have this for each p, we get a map between tangent bundles

f∗ : TM → TN

which restricts to f∗,p on each TpM . As it turns out, f is smooth if and only if f∗ is smooth. We also denote
f∗ by df . We will define the d operator shortly. Similar to the tangent bundle, we define the co-tangent
bundle which is defined as

T ∗M =
⊔
p∈M

T ∗
pM

which carries the “same” manifold structure as TM .
With the differential of a function defined, we turn our attention to k-forms, which are the appropriate

domain of integration. Recall that for a vector space V , we can form its tensor and exterior algebras TV
and ΛV , which have graded components T kV and ΛkV , respectively. Let π be the projection map from
ΛkT ∗M onto M , induces from the projection TM →M . For k ≥ 0, a differential k-form ω is a smooth map
ω :M → ΛkTM such that π ◦ω = idM . First, note that it is clear that for each p ∈M we get an alternating
form

ωp : (TpM)k → R.

Let (U,φ) be a local chart, let { ∂

∂xi
} be the basis of TpM and let {dxi} be the basis of (TpM)∗. Then we

can write
ω =

∑
ωi1,...,ikdx

i1 ∧ · · · ∧ dxik

where the sum ranges over all subsets of cardinality k of {x1, . . . , xn}. We then let Ωk(M) denote the k-forms
on M , where we define Ω0(M) = C∞(M). It is clear that Ωr(M) = 0 when r > n. If M is n-dimensional,
then a nowhere vanishing n-form is called a volume form. Such a form ω has the form ω = fdx1 ∧ · · · dxn,
where f ∈ C∞(M) is such that f(x) ̸= 0 for all x ∈M . The intermediate value theorem implies that f has
the same sign on all of M . We call this the orientation of the manifold.

Now let M be an n-dimensional manifold, and let ω ∈ Ωn−1(M). We want to find a formula for
integrating ω as in Stoke’s thereom from multivariable calculus. Let (U,φ) be a chart. Then we obtain a
map ω∗ = ω ◦ ϕ−1, which is a n− 1 form on φ(U). Thus,∫

φ(U)

ω ◦ φ−1 =

∫
∂φ(U)

d(ω ◦ φ−1).

Let (Uα, φα) be a countable atlas of M and let {ρα} be a partition of unity subordinate to {Uα}. One can
then write ω =

∑
α
ραω. Then ∫

M

ω =

∫
M

∑
ραω =

∑∫
M

ραω.

By Stoke’s thereom in multivariable calculus, we obtain∫
M

ραω :=

∫
φ(U)

ω ◦ φ−1 =

∫
∂φ(U)

d(ω ◦ φ−1)

so ∫
M

ω =
∑∫

∂φ(U)

d(ω ◦ φ−1) =
∑∫

∂Uα

dω =

∫
∂M

dω.

Theorem 1. (Stoke’s Theorem) Let M be a real orientable smooth manifold of dimension n with boundary,
and let ω ∈ Ωn−1(M) be a differential form with compact support. Then∫

M

dω =

∫
∂M

ω.

Let us end this section by defining the d operator that we defined on smooth functions. So far, we have
one function d : C∞(M) → Ω1(M). We aim to define d as a map from Ωk(M) to Ωk+1(M). Let us assume
that d satisfies the following:

1. d is linear

2. d2 = d ◦ d = 0

3. If ω ∈ Ωk(M) and η ∈ Ωl(M) then d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

Given our first d on smooth maps, it is clear that we can extend to a map from Ωk(M) to Ωk+1(M).
This defines the de Rham complex, which is the cochain complex

· · · → Ωk(M)
dk−→ Ωk+1(M)

dk+1−−−→ · · ·

from which we obtain the de Rham cohomology groups

Hk
DR(M) = ker(dn)/im(dn−1).
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